Chain Couplings

Chain Coupling No. Chain No. Bore Dia Dimension Inertia Approx Weight Casing
Min Max L I S d1 d2 C ×10-3 Dimension Approx Weight
A B
mm mm mm mm mm mm mm mm kgf·m2 kg mm mm kg
3012 06B-2X12 12 16 64.8 29.8 5.2 25 45 10.2 0.233 0.4 69 63 0.3
4012 40-2X12 12 22 79.4 36.0 7.4 35 61 14.4 1.571 0.8 77 72 0.3
4014 40-2X14 12 28 79.4 36.0 7.4 43 69 14.4 1.924 1.1 84 75 0.4
4016 40-2X16 14 32 87.4 40.0 7.4 50 77 14.4 3.285 1.4 92 75 0.4
5014 50-2X14 16 35 99.7 45.0 9.7 53 86 18.1 6.571 2.2 101 85 0.5
5016 50-2X16 16 40 99.7 45.0 9.7 60 96 18.1 9.720 2.7 111 85 0.6
5018 50-2X18 16 45 99.7 45.0 9.7 70 106 18.1 15.420 3.8 122 85 0.8
6018 60-2X18 20 56 123.5 56.0 11.5 85 128 22.8 40.210 6.2 142 106 1.2
6571 60-2X20 20 60 123.5 56.0 11.5 98 140 22.8 62.870 7.8 158 105 1.6
6571 60-2X22 20 71 123.5 56.0 11.5 110 152 22.8 93.450 10.4 168 117 1.8
8018 80-2X18 20 80 141.2 63.0 15.2 110 170 29.3 142.030 12.7 190 129 2.5
8571 80-2X20 20 90 145.2 65.0 15.2 120 186 29.3 204.900 16.0 210 137 2.9
8571 80-2X22 20 100 157.2 71.0 15.2 140 202 29.3 341.170 20.2 226 137 3.6
1571 100-2X20 25 110 178.8 80.0 18.8 160 233 35.8 646.290 33.0 281 153 4.6
12018 120-2X18 35 125 202.7 90.0 22.7 170 256 45.4 1075.710 47.0 307 181 6.2
12571 120-2X22 35 140 222.7 100.0 22.7 210 304 45.4 2454.500 72.0 357 181 8.0

Chain Couplings

The chain coupling is composed of a duplex roller chain and a pair of coupling sprockets. The function of connection and detachment is done by the joint of the chain. It has the characteristic of being compact and powerful, excellent durability, safe and smart, simple installation and easy alignment. The chain coupling is suitable for a wide range of coupling applications.

Parameters of Chain Couplings

 

 

What Are Chain Couplings?

Chain couplings are mechanical devices for connecting 2 shafts. They consist of 2 rows of roller chains with sprockets that engage them. The shafts are then cranked to move the coupling. Chain couplings are available in a range of sizes and torque capacities.

Chain couplings are all steel and compact for space-constrained applications. They transmit high torques and offer positive power transmission. Unlike conventional couplings, chain couplings require less space and are easily installed and dismantled. They also provide a balanced unit operation, which is essential for high torques. Chain couplings are typically used in low-speed, high torque applications. They also offer a high degree of flexibility and allow for misalignment of up to 2 degrees between the shafts.

Advantages of a Chain Coupling

A chain coupling is a type of transmission system that uses a single common chain, meshing with 2 parallel sprockets to transfer power from 1 shaft to the other. A chain coupling comes in various varieties, including roller chain coupling, toothed chain coupling, and nylon chain coupling. The benefits of a chain coupling include its simplicity, reliability, and low installation accuracy. A chain coupling is a common option for shafting transmission applications, especially in low-speed, high-torque applications.

One of the most important advantages of chain couplings is their high-torque capability. Because they are made of 2 flanges linked by a duplex roller chain, they are ideal for high-torque applications. They can accommodate up to 2 degrees of misalignment, which makes them a common choice for applications that require high torque. Another advantage of chain couplings is their ease of installation and low-maintenance requirements.

Besides being easy to assemble, a chain coupling also keeps the 2 shafts perfectly aligned. It also minimizes shock and vibrations during power transmission. It should also have a low-profile design and be easy to fit between 2 shafts. And, of course, it should be CZPT to transmit power from 1 shaft to the other. These features are essential for high-speed applications.

How to Install a Roller Chain Coupling?

Ever-power chain couplings feature a unique single-pin design that greatly simplifies the installation process. Simply follow these simple steps.

  • Install the oil seal on each hub
  • Adjust the alignment of the shaft and coupling assembly
  • Adjust the distance between the sprocket faces
  • Thoroughly lubricate the coupling chain
  • Install the chain to the coupling using the single pin coupling ring
  • Firmly close and secure the coupling cover (optional, depending on operating conditions)

The chain coupling installation process is simpler and faster than conventional rigid couplings.

Additional information

What Is a Pulley?

The pulley is a wheel mounted on a shaft or axle. Its purpose is to support the movement of a cable that is taut. This cable transfers power to a shaft. However, there are certain safety precautions that you should follow when using a pulley. Read on to learn more! Listed below are common uses and their main parts. Listed below are some of the benefits of using a pulley.
pulley

Common uses of a pulley

A pulley is a common mechanical device used to increase the force needed to lift a heavy object. Most commonly, these devices are used in construction equipment. These machines use high-10sion ropes to transfer heavy objects from 1 floor to another. Other common uses of a pulley include buckets and flagpoles. These devices are extremely useful in a wide range of applications. To learn more about the common uses of pulleys, keep reading.
A pulley is a wheel with grooves for holding rope. Its purpose is to change the direction and point at which a pulling force acts. It is usually used in sets to reduce the amount of force needed to lift a load, but the work involved is similar. Pulleys are also used in rock climbing devices. For many applications, a pulley is a vital part of construction.
The most common use of a pulley involves hoisting and lowering a flag. Other examples include clotheslines, bird feeders, and escalators. Pulleys are also commonly used on oil derricks. Many other common applications include hoisting and lowering garage doors. Pulley systems are also used in engines and cranes. For more information, check out our interactive pulley diagram!
Pulleys can also be used to lower total work required for a task. In many cases, a pulley will consist of 2 parts: the pulley hub and the shaft pulley. The hub clamps the shaft pulley, while the pulley itself is connected to the motor or other device. If you’re looking for a pulley, it’s important to learn how it works.
The most common uses for a pulley involve lifting heavy objects, and the mechanism used to lift them is known as a pulley. A pulley is an industrial device that uses 2 wheels to reduce the force needed to lift a weight. The pulley reduces this force by half by allowing the user to pull on the rope 4 times as far. The pulley also allows for a smaller lifting distance.

Main parts of a pulley

A pulley consists of the main element of a system. This is typically a cable, rope, belt, or chain. There are 2 basic types of pulleys – a Driver Pulley and a Follower Pulley. Pulleys are available in small and large sizes. The periphery part of the pulley is called the Face, and the protruding middle part is called the Crown. A pulley’s face can be round, rectangular, or even “V” shaped.
The first pulley was created by the Greek mathematician Archimedes in the third century BCE. These simple machines are made of a rope, an axle, and a wheel. The pulley’s end is attached to a person, object, or motor. These machines can be used in various tasks to lift heavy objects. The pulley is a great mechanical advantage for any lifter.
The ideal mechanical advantage of a pulley is defined by the number of rope segments that pull an object. The higher the number of loops on the rope, the higher the mechanical advantage. The greater the mechanical advantage, the less force is required to move the object. Likewise, the greater the distance the rope traverses, the higher the mechanical advantage of a pulley. There are several different types of pulley, depending on their combination of rope, wheel, and rope.
The basic components of a pulley are the face and hub, and the rope is threaded into the center of the pulley. The pulley is usually made of a rope and can be used to lift heavy weights. It can also be used to apply great force in any direction. Step pulleys have multiple faces, which are fixed in sequence. They can also increase the speed of the driven pulley.
A pulley is a simple machine consisting of a wheel, rope, or chain. These parts are crucial for making moving and lifting easier. Because they change the direction and magnitude of force, they can be a useful tool. Some pulleys even change direction. You can learn more about the pulley by downloading this resource today. The resources are designed to support the new 9-1 GCSEs in Design & Technology and Engineering.
pulley

Mechanical advantage

Pulleys have been used to move heavy objects for centuries. When 2 rope sections are used, the weight of a 100kg mass can be moved with only 500 newtons of force. Adding an extra pulley increases the mechanical advantage. If the pulley has 2 wheels, the distance between the rope sections and the wheel grooves is only half the distance, but the mechanical advantage still applies. Adding another pulley increases the mechanical advantage, but can be risky.
Mechanical advantage is the ratio of force used versus force applied. The calculations are made under the assumption that the ropes and weights do not elongate or lose energy due to friction. If the weights are very light, the mechanical advantage is greater than that in the real world. To calculate the mechanical advantage, the weight of the load to be lifted must be the same as the weight of the person using the pulley.
A single moveable pulley has a mechanical advantage of 2. The weight passes around the pulley, and 1 end of the rope is attached to a fixed point. The pulling force is then applied to the other end of the rope. The distance the weight travels doubles, or halved, depending on the direction of the pulley. Adding a second pulley reduces the distance and the effort required to lift it.
There are several ways to calculate the mechanical advantage of a pulley system. Some methods are specific to certain types of systems, while others work for all systems. The T-Method is a good choice in many applications, as it calculates the units of 10sion for each rope segment. Once you have determined the input force, you need to determine the maximum force that will be applied to each component. A compound pulley, for example, will require 4 units of 10sion for each rope segment.
In simple terms, the effort is the amount of force needed to lift the load. This force is measured in newtons (N). A mechanical advantage is often presented without units. If the student does not have this unit, you may need to convert the units to newtons, since 1 kilogram is equal to 10 newtons. If you can’t figure out the units of effort, you can use the KWL chart provided by the teacher.
pulley

Safety precautions

There are a few safety precautions you should take when using a pulley. First, always check the SWL (safe working load) before attaching anything to the pulley. This indicates the maximum weight and angle the pulley can safely handle. Second, make sure that your work area is free from people and debris. Third, wear a hard hat to protect your head from blows and falling objects.
Another important consideration is anchoring. Although the pulley reduces the weight of an object, it is not enough to eliminate the weight. This is especially true if you are hoisting a heavy object, such as a motorcycle or lawnmower. It is important to ensure that the anchoring point can support the entire weight of the load. It is also important to follow proper anchoring procedures when using a pulley to lift a motorcycle or lawnmower.
In addition to the safety latch, you should use a tag line to control the suspended load. Remember that a chain pulley block is necessary for vertical lifting. You should also wear personal protective equipment (PPE) while using a pulley to avoid injuries. If your workplace does not have an PPE policy, you should consider implementing a similar policy. These safety guidelines are a good start.
If you are using a pulley to lift heavy objects, make sure to wear gloves. Those who are not familiar with rope-pulling will have an easier time demonstrating how it works. If you are using a rope-pulley system in a classroom, be sure to follow lab safety guidelines. Wear cloth gloves, clear the area, and do not jerk the rope. In addition, never allow yourself to be pulled into the rope by an unfamiliar person.
Another important safety precaution when using a pulley is to ensure that the anchor point for your system is adequate to support the weight of the object being lifted. Check with the manufacturer of the pulley to find out what its weight limit is, as some types of pulleys are designed to lift much heavier weights than others. It is important to follow all manufacturer’s instructions when using a pulley.

As one of leading flexible coupling manufacturers, suppliers and exporters of mechanical products, We offer flexible coupling and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of flexible coupling

Recent Posts